Login
Log in using an SSO provider:
Fedora Account System
Red Hat Associate
Red Hat Customer
Login using a Red Hat Bugzilla account
Forgot Password
Create an Account
Red Hat Bugzilla – Attachment 1978456 Details for
Bug 2226012
python-pingouin: FTBFS in Fedora rawhide/f39
Home
New
Search
Simple Search
Advanced Search
My Links
Browse
Requests
Reports
Current State
Search
Tabular reports
Graphical reports
Duplicates
Other Reports
User Changes
Plotly Reports
Bug Status
Bug Severity
Non-Defaults
Product Dashboard
Help
Page Help!
Bug Writing Guidelines
What's new
Browser Support Policy
5.0.4.rh89 Release notes
FAQ
Guides index
User guide
Web Services
Contact
Legal
[?]
This site requires JavaScript to be enabled to function correctly, please enable it.
build.log
build.log (text/plain), 32.00 KB, created by
Fedora Release Engineering
on 2023-07-25 18:36:52 UTC
(
hide
)
Description:
build.log
Filename:
MIME Type:
Creator:
Fedora Release Engineering
Created:
2023-07-25 18:36:52 UTC
Size:
32.00 KB
patch
obsolete
>build/BUILD/pingouin-0.5.3 >configfile: setup.cfg >plugins: cov-4.0.0 >collected 88 items >pingouin/tests/test_bayesian.py ... [ 3%] >pingouin/tests/test_circular.py ........ [ 12%] >pingouin/tests/test_config.py . [ 13%] >pingouin/tests/test_contingency.py .... [ 18%] >pingouin/tests/test_correlation.py ..F. [ 22%] >pingouin/tests/test_distribution.py ...... [ 29%] >pingouin/tests/test_effsize.py ..... [ 35%] >pingouin/tests/test_equivalence.py . [ 36%] >pingouin/tests/test_multicomp.py ..... [ 42%] >pingouin/tests/test_multivariate.py .... [ 46%] >pingouin/tests/test_nonparametric.py ........ [ 55%] >pingouin/tests/test_pairwise.py F >=================================== FAILURES =================================== >______________________ TestCorrelation.test_partial_corr _______________________ >self = <pingouin.tests.test_correlation.TestCorrelation testMethod=test_partial_corr> > def test_partial_corr(self): > """Test function partial_corr. > > Compare with the R package ppcor (which is also used by JASP). > """ > df = read_dataset("partial_corr") > ####################################################################### > # PARTIAL CORRELATION > ####################################################################### > # With one covariate >> pc = partial_corr(data=df, x="x", y="y", covar="cv1") >df = x y cv1 cv2 cv3 >0 5.230740 7.141488 1.825430 -1.085631 -0.255619 >1 6.013931...681 1.754886 >28 3.697089 6.129922 3.138867 -0.140069 1.495644 >29 5.466289 7.747689 1.053789 -0.861755 1.069393 >self = <pingouin.tests.test_correlation.TestCorrelation testMethod=test_partial_corr> >pingouin/tests/test_correlation.py:137: >_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ >data = x y cv1 cv2 cv3 >0 5.230740 7.141488 1.825430 -1.085631 -0.255619 >1 6.013931...681 1.754886 >28 3.697089 6.129922 3.138867 -0.140069 1.495644 >29 5.466289 7.747689 1.053789 -0.861755 1.069393 >x = 'x', y = 'y', covar = 'cv1', x_covar = None, y_covar = None >alternative = 'two-sided', method = 'pearson' > @pf.register_dataframe_method > def partial_corr( > data=None, > x=None, > y=None, > covar=None, > x_covar=None, > y_covar=None, > alternative="two-sided", > method="pearson", > ): > """Partial and semi-partial correlation. > > Parameters > ---------- > data : :py:class:`pandas.DataFrame` > Pandas Dataframe. Note that this function can also directly be used > as a :py:class:`pandas.DataFrame` method, in which case this argument > is no longer needed. > x, y : string > x and y. Must be names of columns in ``data``. > covar : string or list > Covariate(s). Must be a names of columns in ``data``. Use a list if > there are two or more covariates. > x_covar : string or list > Covariate(s) for the ``x`` variable. This is used to compute > semi-partial correlation (i.e. the effect of ``x_covar`` is removed > from ``x`` but not from ``y``). Only one of ``covar``, ``x_covar`` and > ``y_covar`` can be specified. > y_covar : string or list > Covariate(s) for the ``y`` variable. This is used to compute > semi-partial correlation (i.e. the effect of ``y_covar`` is removed > from ``y`` but not from ``x``). Only one of ``covar``, ``x_covar`` and > ``y_covar`` can be specified. > alternative : string > Defines the alternative hypothesis, or tail of the partial correlation. Must be one of > "two-sided" (default), "greater" or "less". Both "greater" and "less" return a one-sided > p-value. "greater" tests against the alternative hypothesis that the partial correlation is > positive (greater than zero), "less" tests against the hypothesis that the partial > correlation is negative. > method : string > Correlation type: > > * ``'pearson'``: Pearson :math:`r` product-moment correlation > * ``'spearman'``: Spearman :math:`\\rho` rank-order correlation > > Returns > ------- > stats : :py:class:`pandas.DataFrame` > > * ``'n'``: Sample size (after removal of missing values) > * ``'r'``: Partial correlation coefficient > * ``'CI95'``: 95% parametric confidence intervals around :math:`r` > * ``'p-val'``: p-value > > See also > -------- > corr, pcorr, pairwise_corr, rm_corr > > Notes > ----- > Partial correlation [1]_ measures the degree of association between ``x`` > and ``y``, after removing the effect of one or more controlling variables > (``covar``, or :math:`Z`). Practically, this is achieved by calculating the > correlation coefficient between the residuals of two linear regressions: > > .. math:: x \\sim Z, y \\sim Z > > Like the correlation coefficient, the partial correlation > coefficient takes on a value in the range from â1 to 1, where 1 indicates a > perfect positive association. > > The semipartial correlation is similar to the partial correlation, > with the exception that the set of controlling variables is only > removed for either ``x`` or ``y``, but not both. > > Pingouin uses the method described in [2]_ to calculate the (semi)partial > correlation coefficients and associated p-values. This method is based on > the inverse covariance matrix and is significantly faster than the > traditional regression-based method. Results have been tested against the > `ppcor <https://cran.r-project.org/web/packages/ppcor/index.html>`_ > R package. > > .. important:: Rows with missing values are automatically removed from > data. > > References > ---------- > .. [1] https://en.wikipedia.org/wiki/Partial_correlation > > .. [2] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681537/ > > Examples > -------- > 1. Partial correlation with one covariate > > >>> import pingouin as pg > >>> df = pg.read_dataset('partial_corr') > >>> pg.partial_corr(data=df, x='x', y='y', covar='cv1').round(3) > n r CI95% p-val > pearson 30 0.568 [0.25, 0.77] 0.001 > > 2. Spearman partial correlation with several covariates > > >>> # Partial correlation of x and y controlling for cv1, cv2 and cv3 > >>> pg.partial_corr(data=df, x='x', y='y', covar=['cv1', 'cv2', 'cv3'], > ... method='spearman').round(3) > n r CI95% p-val > spearman 30 0.521 [0.18, 0.75] 0.005 > > 3. Same but one-sided test > > >>> pg.partial_corr(data=df, x='x', y='y', covar=['cv1', 'cv2', 'cv3'], > ... alternative="greater", method='spearman').round(3) > n r CI95% p-val > spearman 30 0.521 [0.24, 1.0] 0.003 > > >>> pg.partial_corr(data=df, x='x', y='y', covar=['cv1', 'cv2', 'cv3'], > ... alternative="less", method='spearman').round(3) > n r CI95% p-val > spearman 30 0.521 [-1.0, 0.72] 0.997 > > 4. As a pandas method > > >>> df.partial_corr(x='x', y='y', covar=['cv1'], method='spearman').round(3) > n r CI95% p-val > spearman 30 0.578 [0.27, 0.78] 0.001 > > 5. Partial correlation matrix (returns only the correlation coefficients) > > >>> df.pcorr().round(3) > x y cv1 cv2 cv3 > x 1.000 0.493 -0.095 0.130 -0.385 > y 0.493 1.000 -0.007 0.104 -0.002 > cv1 -0.095 -0.007 1.000 -0.241 -0.470 > cv2 0.130 0.104 -0.241 1.000 -0.118 > cv3 -0.385 -0.002 -0.470 -0.118 1.000 > > 6. Semi-partial correlation on x > > >>> pg.partial_corr(data=df, x='x', y='y', x_covar=['cv1', 'cv2', 'cv3']).round(3) > n r CI95% p-val > pearson 30 0.463 [0.1, 0.72] 0.015 > """ > from pingouin.utils import _flatten_list > > # Safety check > assert alternative in [ > "two-sided", > "greater", > "less", > ], "Alternative must be one of 'two-sided' (default), 'greater' or 'less'." > assert method in [ > "pearson", > "spearman", > ], 'only "pearson" and "spearman" are supported for partial correlation.' > assert isinstance(data, pd.DataFrame), "data must be a pandas DataFrame." > assert data.shape[0] > 2, "Data must have at least 3 samples." > if covar is not None and (x_covar is not None or y_covar is not None): > raise ValueError("Cannot specify both covar and {x,y}_covar.") > if x_covar is not None and y_covar is not None: > raise ValueError("Cannot specify both x_covar and y_covar.") > assert x != covar, "x and covar must be independent" > assert y != covar, "y and covar must be independent" > assert x != y, "x and y must be independent" > if isinstance(covar, list): > assert x not in covar, "x and covar must be independent" > assert y not in covar, "y and covar must be independent" > # Check that columns exist > col = _flatten_list([x, y, covar, x_covar, y_covar]) >> assert all([c in data for c in col]), "columns are not in dataframe." >E AssertionError: columns are not in dataframe. >_flatten_list = <function _flatten_list at 0xffff7ea32520> >alternative = 'two-sided' >col = ['x', 'y', 'cv1', None, None] >covar = 'cv1' >data = x y cv1 cv2 cv3 >0 5.230740 7.141488 1.825430 -1.085631 -0.255619 >1 6.013931...681 1.754886 >28 3.697089 6.129922 3.138867 -0.140069 1.495644 >29 5.466289 7.747689 1.053789 -0.861755 1.069393 >method = 'pearson' >x = 'x' >x_covar = None >y = 'y' >y_covar = None >pingouin/correlation.py:843: AssertionError >_______________________ TestPairwise.test_pairwise_corr ________________________ >self = <pingouin.tests.test_pairwise.TestPairwise testMethod=test_pairwise_corr> > def test_pairwise_corr(self): > """Test function pairwise_corr""" > # Load JASP Big 5 DataSets (remove subject column) > data = read_dataset("pairwise_corr").iloc[:, 1:] > stats = pairwise_corr(data=data, method="pearson", alternative="two-sided") > jasp_rval = [-0.350, -0.01, -0.134, -0.368, 0.267, 0.055, 0.065, 0.159, -0.013, 0.159] > assert np.allclose(stats["r"].round(3).to_numpy(), jasp_rval) > assert stats["n"].to_numpy()[0] == 500 > # Correct for multiple comparisons > pairwise_corr(data=data, method="spearman", alternative="greater", padjust="bonf") > # Check with a subset of columns > pairwise_corr(data=data, columns=["Neuroticism", "Extraversion"]) > with pytest.raises(ValueError): > pairwise_corr(data=data, columns="wrong") > # Check with non-numeric columns > data["test"] = "test" > pairwise_corr(data=data, method="pearson") > # Check different variation of product / combination > n = data.shape[0] > data["Age"] = np.random.randint(18, 65, n) > data["IQ"] = np.random.normal(105, 1, n) > data["One"] = 1 > data["Gender"] = np.repeat(["M", "F"], int(n / 2)) > pairwise_corr(data, columns=["Neuroticism", "Gender"], method="shepherd") > pairwise_corr(data, columns=["Neuroticism", "Extraversion", "Gender"]) > pairwise_corr(data, columns=["Neuroticism"]) > pairwise_corr(data, columns="Neuroticism", method="skipped") > pairwise_corr(data, columns=[["Neuroticism"]], method="spearman") > pairwise_corr(data, columns=[["Neuroticism"], None], method="percbend") > pairwise_corr(data, columns=[["Neuroticism", "Gender"], ["Age"]]) > pairwise_corr(data, columns=[["Neuroticism"], ["Age", "IQ"]]) > pairwise_corr(data, columns=[["Age", "IQ"], []]) > pairwise_corr(data, columns=["Age", "Gender", "IQ", "Wrong"]) > pairwise_corr(data, columns=["Age", "Gender", "Wrong"]) > # Test with no good combinations > with pytest.raises(ValueError): > pairwise_corr(data, columns=["Gender", "Gender"]) > # Test when one column has only one unique value > pairwise_corr(data=data, columns=["Age", "One", "Gender"]) > stats = pairwise_corr(data, columns=["Neuroticism", "IQ", "One"]) > assert stats.shape[0] == 1 > # Test with covariate >> pairwise_corr(data, covar="Age") >data = Neuroticism Extraversion Openness ... IQ One Gender >0 2.47917 4.20833 3.93750 ... 1... 105.904904 1 F >499 2.54167 3.56250 3.14583 ... 105.719773 1 F >[500 rows x 10 columns] >jasp_rval = [-0.35, -0.01, -0.134, -0.368, 0.267, 0.055, ...] >n = 500 >self = <pingouin.tests.test_pairwise.TestPairwise testMethod=test_pairwise_corr> >stats = X Y method ... p-unc BF10 power >0 Neuroticism IQ pearson ... 0.670885 0.061 0.070912 >[1 rows x 10 columns] >pingouin/tests/test_pairwise.py:681: >_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ >pingouin/pairwise.py:1458: in pairwise_corr > cor_st = partial_corr( > X = array(['Neuroticism', 'Neuroticism', 'Neuroticism', 'Neuroticism', > 'Neuroticism', 'Neuroticism', 'Extraversion'...eness', > 'Agreeableness', 'Agreeableness', 'Conscientiousness', > 'Conscientiousness', 'Age'], dtype='<U17') > Y = array(['Extraversion', 'Openness', 'Agreeableness', 'Conscientiousness', > 'Age', 'IQ', 'Openness', 'Agreeablenes...ableness', 'Conscientiousness', 'Age', 'IQ', > 'Conscientiousness', 'Age', 'IQ', 'Age', 'IQ', 'IQ'], dtype='<U17') > alternative = 'two-sided' > col1 = 'Neuroticism' > col2 = 'Extraversion' > columns = None > combs = array([['Neuroticism', 'Extraversion'], > ['Neuroticism', 'Openness'], > ['Neuroticism', 'Agreeableness'], > ...', 'IQ'], > ['Conscientiousness', 'Age'], > ['Conscientiousness', 'IQ'], > ['Age', 'IQ']], dtype='<U17') > corr = <function corr at 0xffff7d4e3d80> > covar = ['Age'] > data = Neuroticism Extraversion Openness ... Conscientiousness Age IQ >0 2.47917 4.20833 3.9...8 105.904904 >499 2.54167 3.56250 3.14583 ... 2.89583 32 105.719773 >[500 rows x 7 columns] > i = 0 > keys = ['Neuroticism', 'Extraversion', 'Openness', 'Agreeableness', 'Conscientiousness', 'Age', ...] > method = 'pearson' > multi_index = False > nan_policy = 'pairwise' > old_options = {'round': None, 'round.column.BF10': <function _format_bf at 0xffff811ee700>, 'round.column.CI95%': 2} > padjust = 'none' > partial_corr = <function partial_corr at 0xffff7d4e3e20> > stats = X Y method ... p-val BF10 power >0 Neuroticism Extraversion pear...n ... NaN NaN NaN >14 Conscientiousness IQ pearson ... NaN NaN NaN >[15 rows x 11 columns] > traverse = <function pairwise_corr.<locals>.traverse at 0xffff7252a7a0> >_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ >data = Neuroticism Extraversion Openness ... Conscientiousness Age IQ >0 2.47917 4.20833 3.9...8 105.904904 >499 2.54167 3.56250 3.14583 ... 2.89583 32 105.719773 >[500 rows x 7 columns] >x = 'Neuroticism', y = 'Extraversion', covar = ['Age'], x_covar = None >y_covar = None, alternative = 'two-sided', method = 'pearson' > @pf.register_dataframe_method > def partial_corr( > data=None, > x=None, > y=None, > covar=None, > x_covar=None, > y_covar=None, > alternative="two-sided", > method="pearson", > ): > """Partial and semi-partial correlation. > > Parameters > ---------- > data : :py:class:`pandas.DataFrame` > Pandas Dataframe. Note that this function can also directly be used > as a :py:class:`pandas.DataFrame` method, in which case this argument > is no longer needed. > x, y : string > x and y. Must be names of columns in ``data``. > covar : string or list > Covariate(s). Must be a names of columns in ``data``. Use a list if > there are two or more covariates. > x_covar : string or list > Covariate(s) for the ``x`` variable. This is used to compute > semi-partial correlation (i.e. the effect of ``x_covar`` is removed > from ``x`` but not from ``y``). Only one of ``covar``, ``x_covar`` and > ``y_covar`` can be specified. > y_covar : string or list > Covariate(s) for the ``y`` variable. This is used to compute > semi-partial correlation (i.e. the effect of ``y_covar`` is removed > from ``y`` but not from ``x``). Only one of ``covar``, ``x_covar`` and > ``y_covar`` can be specified. > alternative : string > Defines the alternative hypothesis, or tail of the partial correlation. Must be one of > "two-sided" (default), "greater" or "less". Both "greater" and "less" return a one-sided > p-value. "greater" tests against the alternative hypothesis that the partial correlation is > positive (greater than zero), "less" tests against the hypothesis that the partial > correlation is negative. > method : string > Correlation type: > > * ``'pearson'``: Pearson :math:`r` product-moment correlation > * ``'spearman'``: Spearman :math:`\\rho` rank-order correlation > > Returns > ------- > stats : :py:class:`pandas.DataFrame` > > * ``'n'``: Sample size (after removal of missing values) > * ``'r'``: Partial correlation coefficient > * ``'CI95'``: 95% parametric confidence intervals around :math:`r` > * ``'p-val'``: p-value > > See also > -------- > corr, pcorr, pairwise_corr, rm_corr > > Notes > ----- > Partial correlation [1]_ measures the degree of association between ``x`` > and ``y``, after removing the effect of one or more controlling variables > (``covar``, or :math:`Z`). Practically, this is achieved by calculating the > correlation coefficient between the residuals of two linear regressions: > > .. math:: x \\sim Z, y \\sim Z > > Like the correlation coefficient, the partial correlation > coefficient takes on a value in the range from â1 to 1, where 1 indicates a > perfect positive association. > > The semipartial correlation is similar to the partial correlation, > with the exception that the set of controlling variables is only > removed for either ``x`` or ``y``, but not both. > > Pingouin uses the method described in [2]_ to calculate the (semi)partial > correlation coefficients and associated p-values. This method is based on > the inverse covariance matrix and is significantly faster than the > traditional regression-based method. Results have been tested against the > `ppcor <https://cran.r-project.org/web/packages/ppcor/index.html>`_ > R package. > > .. important:: Rows with missing values are automatically removed from > data. > > References > ---------- > .. [1] https://en.wikipedia.org/wiki/Partial_correlation > > .. [2] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681537/ > > Examples > -------- > 1. Partial correlation with one covariate > > >>> import pingouin as pg > >>> df = pg.read_dataset('partial_corr') > >>> pg.partial_corr(data=df, x='x', y='y', covar='cv1').round(3) > n r CI95% p-val > pearson 30 0.568 [0.25, 0.77] 0.001 > > 2. Spearman partial correlation with several covariates > > >>> # Partial correlation of x and y controlling for cv1, cv2 and cv3 > >>> pg.partial_corr(data=df, x='x', y='y', covar=['cv1', 'cv2', 'cv3'], > ... method='spearman').round(3) > n r CI95% p-val > spearman 30 0.521 [0.18, 0.75] 0.005 > > 3. Same but one-sided test > > >>> pg.partial_corr(data=df, x='x', y='y', covar=['cv1', 'cv2', 'cv3'], > ... alternative="greater", method='spearman').round(3) > n r CI95% p-val > spearman 30 0.521 [0.24, 1.0] 0.003 > > >>> pg.partial_corr(data=df, x='x', y='y', covar=['cv1', 'cv2', 'cv3'], > ... alternative="less", method='spearman').round(3) > n r CI95% p-val > spearman 30 0.521 [-1.0, 0.72] 0.997 > > 4. As a pandas method > > >>> df.partial_corr(x='x', y='y', covar=['cv1'], method='spearman').round(3) > n r CI95% p-val > spearman 30 0.578 [0.27, 0.78] 0.001 > > 5. Partial correlation matrix (returns only the correlation coefficients) > > >>> df.pcorr().round(3) > x y cv1 cv2 cv3 > x 1.000 0.493 -0.095 0.130 -0.385 > y 0.493 1.000 -0.007 0.104 -0.002 > cv1 -0.095 -0.007 1.000 -0.241 -0.470 > cv2 0.130 0.104 -0.241 1.000 -0.118 > cv3 -0.385 -0.002 -0.470 -0.118 1.000 > > 6. Semi-partial correlation on x > > >>> pg.partial_corr(data=df, x='x', y='y', x_covar=['cv1', 'cv2', 'cv3']).round(3) > n r CI95% p-val > pearson 30 0.463 [0.1, 0.72] 0.015 > """ > from pingouin.utils import _flatten_list > > # Safety check > assert alternative in [ > "two-sided", > "greater", > "less", > ], "Alternative must be one of 'two-sided' (default), 'greater' or 'less'." > assert method in [ > "pearson", > "spearman", > ], 'only "pearson" and "spearman" are supported for partial correlation.' > assert isinstance(data, pd.DataFrame), "data must be a pandas DataFrame." > assert data.shape[0] > 2, "Data must have at least 3 samples." > if covar is not None and (x_covar is not None or y_covar is not None): > raise ValueError("Cannot specify both covar and {x,y}_covar.") > if x_covar is not None and y_covar is not None: > raise ValueError("Cannot specify both x_covar and y_covar.") > assert x != covar, "x and covar must be independent" > assert y != covar, "y and covar must be independent" > assert x != y, "x and y must be independent" > if isinstance(covar, list): > assert x not in covar, "x and covar must be independent" > assert y not in covar, "y and covar must be independent" > # Check that columns exist > col = _flatten_list([x, y, covar, x_covar, y_covar]) >> assert all([c in data for c in col]), "columns are not in dataframe." >E AssertionError: columns are not in dataframe. >_flatten_list = <function _flatten_list at 0xffff7ea32520> >alternative = 'two-sided' >col = ['Neuroticism', 'Extraversion', 'Age', None, None] >covar = ['Age'] >data = Neuroticism Extraversion Openness ... Conscientiousness Age IQ >0 2.47917 4.20833 3.9...8 105.904904 >499 2.54167 3.56250 3.14583 ... 2.89583 32 105.719773 >[500 rows x 7 columns] >method = 'pearson' >x = 'Neuroticism' >x_covar = None >y = 'Extraversion' >y_covar = None >pingouin/correlation.py:843: AssertionError >=============================== warnings summary =============================== >../../../../usr/lib64/python3.12/site-packages/coverage/inorout.py:460 > /usr/lib64/python3.12/site-packages/coverage/inorout.py:460: CoverageWarning: --include is ignored because --source is set (include-ignored) > self.warn("--include is ignored because --source is set", slug="include-ignored") >../../../../usr/lib/python3.12/site-packages/pytz/tzinfo.py:27 > /usr/lib/python3.12/site-packages/pytz/tzinfo.py:27: DeprecationWarning: datetime.utcfromtimestamp() is deprecated and scheduled for removal in a future version. Use timezone-aware objects to represent datetimes in UTC: datetime.fromtimestamp(timestamp, datetime.UTC). > _epoch = datetime.utcfromtimestamp(0) >../../../../usr/lib/python3.12/site-packages/pkg_resources/__init__.py:121 > /usr/lib/python3.12/site-packages/pkg_resources/__init__.py:121: DeprecationWarning: pkg_resources is deprecated as an API > warnings.warn("pkg_resources is deprecated as an API", DeprecationWarning) >pingouin/tests/test_contingency.py::TestContingency::test_dichotomous_crosstab >pingouin/tests/test_contingency.py::TestContingency::test_dichotomous_crosstab > /usr/lib/python3.12/site-packages/outdated/utils.py:14: OutdatedCheckFailedWarning: Failed to check for latest version of package. > Set the environment variable OUTDATED_RAISE_EXCEPTION=1 for a full traceback. > Set the environment variable OUTDATED_IGNORE=1 to disable these warnings. > return warn( >pingouin/tests/test_correlation.py: 9 warnings >pingouin/tests/test_distribution.py: 48 warnings >pingouin/tests/test_pairwise.py: 6 warnings > /builddir/build/BUILD/pingouin-0.5.3/pingouin/utils.py:301: DeprecationWarning: NotImplemented should not be used in a boolean context > x = list(filter(None.__ne__, x)) >-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html >----------- coverage: platform linux, python 3.12.0-beta-4 ----------- >Name Stmts Miss Branch BrPart Cover Missing >----------------------------------------------------------------------- >pingouin/__init__.py 23 0 0 0 100% >pingouin/bayesian.py 76 0 20 0 100% >pingouin/circular.py 103 0 12 0 100% >pingouin/config.py 9 0 0 0 100% >pingouin/contingency.py 80 0 40 1 99% 366->368 >pingouin/correlation.py 311 67 100 5 75% 64->71, 148->147, 642-643, 832, 834, 845-904, 952-957, 1073-1117 >pingouin/distribution.py 176 0 56 1 99% 467->470 >pingouin/effsize.py 182 0 90 0 100% >pingouin/equivalence.py 14 0 0 0 100% >pingouin/multicomp.py 81 0 24 0 100% >pingouin/multivariate.py 103 0 14 0 100% >pingouin/nonparametric.py 156 7 34 3 95% 456->458, 727->739, 816-822 >pingouin/pairwise.py 374 279 148 6 27% 28-29, 268-594, 716-765, 869-931, 1034-1100, 1325-1330, 1334-1340, 1394-1395, 1422-1423, 1432, 1441-1444, 1506 >pingouin/parametric.py 456 346 122 6 27% 228-229, 241, 248-249, 312, 510-669, 678-806, 967-1044, 1054-1131, 1141-1212, 1331-1371, 1467-1606, 1701->1703, 1729-1730 >pingouin/plotting.py 351 337 90 0 3% 115-193, 215-216, 332-407, 523-656, 747-893, 978-1022, 1087-1152 >pingouin/power.py 282 186 118 16 31% 128, 141->143, 144, 175-210, 295-366, 471-538, 693-766, 842, 851->855, 855->857, 858, 859->865, 861-862, 906-938, 1022-1023, 1026->1028, 1028->1030, 1031, 1043-1072 >pingouin/regression.py 331 306 114 0 6% 315-512, 528-599, 826-949, 955-968, 1016-1020, 1203-1330 >pingouin/reliability.py 85 77 10 0 8% 125-156, 259-379 >pingouin/utils.py 159 30 77 15 76% 53, 76-82, 131, 137->142, 141, 233, 299, 313, 349-362, 365, 368, 371, 374, 377, 380, 383-385 >----------------------------------------------------------------------- >TOTAL 3352 1635 1069 53 51% >============================= slowest 10 durations ============================= >51.02s call pingouin/tests/test_effsize.py::TestEffsize::test_compute_boot_esci >2.16s call pingouin/tests/test_pairwise.py::TestPairwise::test_pairwise_corr >0.47s call pingouin/tests/test_correlation.py::TestCorrelation::test_corr >0.31s call pingouin/tests/test_distribution.py::TestDistribution::test_epsilon >0.27s call pingouin/tests/test_equivalence.py::TestEquivalence::test_tost >0.22s call pingouin/tests/test_correlation.py::TestCorrelation::test_distance_corr >0.15s call pingouin/tests/test_distribution.py::TestDistribution::test_sphericity >0.14s call pingouin/tests/test_contingency.py::TestContingency::test_chi2_independence >0.09s call pingouin/tests/test_bayesian.py::TestBayesian::test_bayesfactor_binom >0.09s call pingouin/tests/test_bayesian.py::TestBayesian::test_bayesfactor_pearson >=========================== short test summary info ============================ >FAILED pingouin/tests/test_correlation.py::TestCorrelation::test_partial_corr >FAILED pingouin/tests/test_pairwise.py::TestPairwise::test_pairwise_corr - As... >!!!!!!!!!!!!!!!!!!!!!!!!!! stopping after 2 failures !!!!!!!!!!!!!!!!!!!!!!!!!!! >============= 2 failed, 48 passed, 68 warnings in 63.26s (0:01:03) ============= >error: Bad exit status from /var/tmp/rpm-tmp.xLiOc9 (%check) >RPM build errors: > Bad exit status from /var/tmp/rpm-tmp.xLiOc9 (%check) >Child return code was: 1 >EXCEPTION: [Error('Command failed: \n # /usr/bin/systemd-nspawn -q -M 954974351d88490db0c31ff9e2eec846 -D /var/lib/mock/f39-build-44306099-5275604/root -a -u mockbuild --capability=cap_ipc_lock --bind=/tmp/mock-resolv.hg_7x8tj:/etc/resolv.conf --bind=/dev/btrfs-control --bind=/dev/mapper/control --bind=/dev/loop-control --bind=/dev/loop0 --bind=/dev/loop1 --bind=/dev/loop2 --bind=/dev/loop3 --bind=/dev/loop4 --bind=/dev/loop5 --bind=/dev/loop6 --bind=/dev/loop7 --bind=/dev/loop8 --bind=/dev/loop9 --bind=/dev/loop10 --bind=/dev/loop11 --console=pipe --setenv=TERM=vt100 --setenv=SHELL=/bin/bash --setenv=HOME=/builddir --setenv=HOSTNAME=mock --setenv=PATH=/usr/bin:/bin:/usr/sbin:/sbin --setenv=PROMPT_COMMAND=printf "\\033]0;<mock-chroot>\\007" --setenv=PS1=<mock-chroot> \\s-\\v\\$ --setenv=LANG=C.UTF-8 --resolv-conf=off bash --login -c /usr/bin/rpmbuild -ba --noprep --noclean --target aarch64 --nodeps /builddir/build/SPECS/python-pingouin.spec\n', 1)] >Traceback (most recent call last): > File "/usr/lib/python3.11/site-packages/mockbuild/trace_decorator.py", line 93, in trace > result = func(*args, **kw) > ^^^^^^^^^^^^^^^^^ > File "/usr/lib/python3.11/site-packages/mockbuild/util.py", line 597, in do_with_status > raise exception.Error("Command failed: \n # %s\n%s" % (command, output), child.returncode) >mockbuild.exception.Error: Command failed: > # /usr/bin/systemd-nspawn -q -M 954974351d88490db0c31ff9e2eec846 -D /var/lib/mock/f39-build-44306099-5275604/root -a -u mockbuild --capability=cap_ipc_lock --bind=/tmp/mock-resolv.hg_7x8tj:/etc/resolv.conf --bind=/dev/btrfs-control --bind=/dev/mapper/control --bind=/dev/loop-control --bind=/dev/loop0 --bind=/dev/loop1 --bind=/dev/loop2 --bind=/dev/loop3 --bind=/dev/loop4 --bind=/dev/loop5 --bind=/dev/loop6 --bind=/dev/loop7 --bind=/dev/loop8 --bind=/dev/loop9 --bind=/dev/loop10 --bind=/dev/loop11 --console=pipe --setenv=TERM=vt100 --setenv=SHELL=/bin/bash --setenv=HOME=/builddir --setenv=HOSTNAME=mock --setenv=PATH=/usr/bin:/bin:/usr/sbin:/sbin --setenv=PROMPT_COMMAND=printf "\033]0;<mock-chroot>\007" --setenv=PS1=<mock-chroot> \s-\v\$ --setenv=LANG=C.UTF-8 --resolv-conf=off bash --login -c /usr/bin/rpmbuild -ba --noprep --noclean --target aarch64 --nodeps /builddir/build/SPECS/python-pingouin.spec >
You cannot view the attachment while viewing its details because your browser does not support IFRAMEs.
View the attachment on a separate page
.
View Attachment As Raw
Actions:
View
Attachments on
bug 2226012
: 1978456 |
1978457
|
1978458