Bug 2320517 (CVE-2024-49888)

Summary: CVE-2024-49888 kernel: bpf: Fix a sdiv overflow issue
Product: [Other] Security Response Reporter: OSIDB Bzimport <bzimport>
Component: vulnerabilityAssignee: Product Security DevOps Team <prodsec-dev>
Status: NEW --- QA Contact:
Severity: medium Docs Contact:
Priority: medium    
Version: unspecifiedCC: dfreiber, drow, jburrell, vkumar
Target Milestone: ---Keywords: Security
Target Release: ---   
Hardware: All   
OS: Linux   
Whiteboard:
Fixed In Version: Doc Type: If docs needed, set a value
Doc Text:
Story Points: ---
Clone Of: Environment:
Last Closed: Type: ---
Regression: --- Mount Type: ---
Documentation: --- CRM:
Verified Versions: Category: ---
oVirt Team: --- RHEL 7.3 requirements from Atomic Host:
Cloudforms Team: --- Target Upstream Version:
Embargoed:
Bug Depends On: 2321080    
Bug Blocks:    

Description OSIDB Bzimport 2024-10-21 19:07:25 UTC
In the Linux kernel, the following vulnerability has been resolved:

bpf: Fix a sdiv overflow issue

Zac Ecob reported a problem where a bpf program may cause kernel crash due
to the following error:
  Oops: divide error: 0000 [#1] PREEMPT SMP KASAN PTI

The failure is due to the below signed divide:
  LLONG_MIN/-1 where LLONG_MIN equals to -9,223,372,036,854,775,808.
LLONG_MIN/-1 is supposed to give a positive number 9,223,372,036,854,775,808,
but it is impossible since for 64-bit system, the maximum positive
number is 9,223,372,036,854,775,807. On x86_64, LLONG_MIN/-1 will
cause a kernel exception. On arm64, the result for LLONG_MIN/-1 is
LLONG_MIN.

Further investigation found all the following sdiv/smod cases may trigger
an exception when bpf program is running on x86_64 platform:
  - LLONG_MIN/-1 for 64bit operation
  - INT_MIN/-1 for 32bit operation
  - LLONG_MIN%-1 for 64bit operation
  - INT_MIN%-1 for 32bit operation
where -1 can be an immediate or in a register.

On arm64, there are no exceptions:
  - LLONG_MIN/-1 = LLONG_MIN
  - INT_MIN/-1 = INT_MIN
  - LLONG_MIN%-1 = 0
  - INT_MIN%-1 = 0
where -1 can be an immediate or in a register.

Insn patching is needed to handle the above cases and the patched codes
produced results aligned with above arm64 result. The below are pseudo
codes to handle sdiv/smod exceptions including both divisor -1 and divisor 0
and the divisor is stored in a register.

sdiv:
      tmp = rX
      tmp += 1 /* [-1, 0] -> [0, 1]
      if tmp >(unsigned) 1 goto L2
      if tmp == 0 goto L1
      rY = 0
  L1:
      rY = -rY;
      goto L3
  L2:
      rY /= rX
  L3:

smod:
      tmp = rX
      tmp += 1 /* [-1, 0] -> [0, 1]
      if tmp >(unsigned) 1 goto L1
      if tmp == 1 (is64 ? goto L2 : goto L3)
      rY = 0;
      goto L2
  L1:
      rY %= rX
  L2:
      goto L4  // only when !is64
  L3:
      wY = wY  // only when !is64
  L4:

  [1] https://lore.kernel.org/bpf/tPJLTEh7S_DxFEqAI2Ji5MBSoZVg7_G-Py2iaZpAaWtM961fFTWtsnlzwvTbzBzaUzwQAoNATXKUlt0LZOFgnDcIyKCswAnAGdUF3LBrhGQ=@protonmail.com/

Comment 2 errata-xmlrpc 2024-12-11 01:19:52 UTC
This issue has been addressed in the following products:

  Red Hat Enterprise Linux 9.4 Extended Update Support

Via RHSA-2024:10942 https://access.redhat.com/errata/RHSA-2024:10942

Comment 3 errata-xmlrpc 2024-12-19 00:43:14 UTC
This issue has been addressed in the following products:

  Red Hat Enterprise Linux 9

Via RHSA-2024:11486 https://access.redhat.com/errata/RHSA-2024:11486