Bug 2320531 (CVE-2024-50015)
| Summary: | CVE-2024-50015 kernel: ext4: dax: fix overflowing extents beyond inode size when partially writing | ||
|---|---|---|---|
| Product: | [Other] Security Response | Reporter: | OSIDB Bzimport <bzimport> |
| Component: | vulnerability | Assignee: | Product Security DevOps Team <prodsec-dev> |
| Status: | NEW --- | QA Contact: | |
| Severity: | medium | Docs Contact: | |
| Priority: | medium | ||
| Version: | unspecified | CC: | dfreiber, drow, jburrell, vkumar |
| Target Milestone: | --- | Keywords: | Security |
| Target Release: | --- | ||
| Hardware: | All | ||
| OS: | Linux | ||
| Whiteboard: | |||
| Fixed In Version: | Doc Type: | If docs needed, set a value | |
| Doc Text: |
An inode corruption flaw was found in the Linux kernel's Ext4 file system functionality related to how a user can interrupt a write using the dax_iomap_rw()function. This flaw allows a local user to make non-fatal mistakes with Ext4, leading to a file system denial of service.
|
Story Points: | --- |
| Clone Of: | Environment: | ||
| Last Closed: | Type: | --- | |
| Regression: | --- | Mount Type: | --- |
| Documentation: | --- | CRM: | |
| Verified Versions: | Category: | --- | |
| oVirt Team: | --- | RHEL 7.3 requirements from Atomic Host: | |
| Cloudforms Team: | --- | Target Upstream Version: | |
| Embargoed: | |||
| Bug Depends On: | 2321065 | ||
| Bug Blocks: | |||
Upstream advisory: https://lore.kernel.org/linux-cve-announce/2024102110-CVE-2024-50015-1eb0@gregkh/T This issue has been addressed in the following products: Red Hat Enterprise Linux 9 Via RHSA-2025:6966 https://access.redhat.com/errata/RHSA-2025:6966 |
In the Linux kernel, the following vulnerability has been resolved: ext4: dax: fix overflowing extents beyond inode size when partially writing The dax_iomap_rw() does two things in each iteration: map written blocks and copy user data to blocks. If the process is killed by user(See signal handling in dax_iomap_iter()), the copied data will be returned and added on inode size, which means that the length of written extents may exceed the inode size, then fsck will fail. An example is given as: dd if=/dev/urandom of=file bs=4M count=1 dax_iomap_rw iomap_iter // round 1 ext4_iomap_begin ext4_iomap_alloc // allocate 0~2M extents(written flag) dax_iomap_iter // copy 2M data iomap_iter // round 2 iomap_iter_advance iter->pos += iter->processed // iter->pos = 2M ext4_iomap_begin ext4_iomap_alloc // allocate 2~4M extents(written flag) dax_iomap_iter fatal_signal_pending done = iter->pos - iocb->ki_pos // done = 2M ext4_handle_inode_extension ext4_update_inode_size // inode size = 2M fsck reports: Inode 13, i_size is 2097152, should be 4194304. Fix? Fix the problem by truncating extents if the written length is smaller than expected.