Bug 2360305 (CVE-2025-22030)

Summary: CVE-2025-22030 kernel: mm: zswap: fix crypto_free_acomp() deadlock in zswap_cpu_comp_dead()
Product: [Other] Security Response Reporter: OSIDB Bzimport <bzimport>
Component: vulnerabilityAssignee: Product Security DevOps Team <prodsec-dev>
Status: NEW --- QA Contact:
Severity: medium Docs Contact:
Priority: medium    
Version: unspecifiedCC: dfreiber, drow, jburrell, vkumar
Target Milestone: ---Keywords: Security
Target Release: ---   
Hardware: All   
OS: Linux   
Whiteboard:
Fixed In Version: Doc Type: ---
Doc Text:
Story Points: ---
Clone Of: Environment:
Last Closed: Type: ---
Regression: --- Mount Type: ---
Documentation: --- CRM:
Verified Versions: Category: ---
oVirt Team: --- RHEL 7.3 requirements from Atomic Host:
Cloudforms Team: --- Target Upstream Version:
Embargoed:

Description OSIDB Bzimport 2025-04-16 15:07:12 UTC
In the Linux kernel, the following vulnerability has been resolved:

mm: zswap: fix crypto_free_acomp() deadlock in zswap_cpu_comp_dead()

Currently, zswap_cpu_comp_dead() calls crypto_free_acomp() while holding
the per-CPU acomp_ctx mutex.  crypto_free_acomp() then holds scomp_lock
(through crypto_exit_scomp_ops_async()).

On the other hand, crypto_alloc_acomp_node() holds the scomp_lock (through
crypto_scomp_init_tfm()), and then allocates memory.  If the allocation
results in reclaim, we may attempt to hold the per-CPU acomp_ctx mutex.

The above dependencies can cause an ABBA deadlock.  For example in the
following scenario:

(1) Task A running on CPU #1:
    crypto_alloc_acomp_node()
      Holds scomp_lock
      Enters reclaim
      Reads per_cpu_ptr(pool->acomp_ctx, 1)

(2) Task A is descheduled

(3) CPU #1 goes offline
    zswap_cpu_comp_dead(CPU #1)
      Holds per_cpu_ptr(pool->acomp_ctx, 1))
      Calls crypto_free_acomp()
      Waits for scomp_lock

(4) Task A running on CPU #2:
      Waits for per_cpu_ptr(pool->acomp_ctx, 1) // Read on CPU #1
      DEADLOCK

Since there is no requirement to call crypto_free_acomp() with the per-CPU
acomp_ctx mutex held in zswap_cpu_comp_dead(), move it after the mutex is
unlocked.  Also move the acomp_request_free() and kfree() calls for
consistency and to avoid any potential sublte locking dependencies in the
future.

With this, only setting acomp_ctx fields to NULL occurs with the mutex
held.  This is similar to how zswap_cpu_comp_prepare() only initializes
acomp_ctx fields with the mutex held, after performing all allocations
before holding the mutex.

Opportunistically, move the NULL check on acomp_ctx so that it takes place
before the mutex dereference.

Comment 1 Avinash Hanwate 2025-04-17 04:55:53 UTC
Upstream advisory:
https://lore.kernel.org/linux-cve-announce/2025041656-CVE-2025-22030-ff28@gregkh/T