Bug 2383456 (CVE-2025-38434)
| Summary: | CVE-2025-38434 kernel: Revert "riscv: Define TASK_SIZE_MAX for __access_ok()" | ||
|---|---|---|---|
| Product: | [Other] Security Response | Reporter: | OSIDB Bzimport <bzimport> |
| Component: | vulnerability | Assignee: | Product Security DevOps Team <prodsec-dev> |
| Status: | NEW --- | QA Contact: | |
| Severity: | unspecified | Docs Contact: | |
| Priority: | unspecified | ||
| Version: | unspecified | Keywords: | Security |
| Target Milestone: | --- | ||
| Target Release: | --- | ||
| Hardware: | All | ||
| OS: | Linux | ||
| Whiteboard: | |||
| Fixed In Version: | Doc Type: | --- | |
| Doc Text: | Story Points: | --- | |
| Clone Of: | Environment: | ||
| Last Closed: | Type: | --- | |
| Regression: | --- | Mount Type: | --- |
| Documentation: | --- | CRM: | |
| Verified Versions: | Category: | --- | |
| oVirt Team: | --- | RHEL 7.3 requirements from Atomic Host: | |
| Cloudforms Team: | --- | Target Upstream Version: | |
| Embargoed: | |||
In the Linux kernel, the following vulnerability has been resolved: Revert "riscv: Define TASK_SIZE_MAX for __access_ok()" This reverts commit ad5643cf2f69 ("riscv: Define TASK_SIZE_MAX for __access_ok()"). This commit changes TASK_SIZE_MAX to be LONG_MAX to optimize access_ok(), because the previous TASK_SIZE_MAX (default to TASK_SIZE) requires some computation. The reasoning was that all user addresses are less than LONG_MAX, and all kernel addresses are greater than LONG_MAX. Therefore access_ok() can filter kernel addresses. Addresses between TASK_SIZE and LONG_MAX are not valid user addresses, but access_ok() let them pass. That was thought to be okay, because they are not valid addresses at hardware level. Unfortunately, one case is missed: get_user_pages_fast() happily accepts addresses between TASK_SIZE and LONG_MAX. futex(), for instance, uses get_user_pages_fast(). This causes the problem reported by Robert [1]. Therefore, revert this commit. TASK_SIZE_MAX is changed to the default: TASK_SIZE. This unfortunately reduces performance, because TASK_SIZE is more expensive to compute compared to LONG_MAX. But correctness first, we can think about optimization later, if required.