Bug 2420412 (CVE-2025-40341)

Summary: CVE-2025-40341 kernel: futex: Don't leak robust_list pointer on exec race
Product: [Other] Security Response Reporter: OSIDB Bzimport <bzimport>
Component: vulnerabilityAssignee: Product Security DevOps Team <prodsec-dev>
Status: NEW --- QA Contact:
Severity: low Docs Contact:
Priority: low    
Version: unspecifiedKeywords: Security
Target Milestone: ---   
Target Release: ---   
Hardware: All   
OS: Linux   
Whiteboard:
Fixed In Version: Doc Type: ---
Doc Text:
A race condition flaw was found in the Linux kernel's futex subsystem. The sys_get_robust_list() and compat_get_robust_list() functions use ptrace_may_access() to verify permissions before accessing another task's robust_list pointer. However, this check is not synchronized with concurrent exec() calls in the target process. An attacker can exploit this race window by calling get_robust_list() on a process just before it executes a setuid binary. The permission check passes while the target is unprivileged, but the robust_list pointer is read after the target transitions to privileged state, potentially leaking memory addresses from a privileged process.
Story Points: ---
Clone Of: Environment:
Last Closed: Type: ---
Regression: --- Mount Type: ---
Documentation: --- CRM:
Verified Versions: Category: ---
oVirt Team: --- RHEL 7.3 requirements from Atomic Host:
Cloudforms Team: --- Target Upstream Version:
Embargoed:

Description OSIDB Bzimport 2025-12-09 05:01:38 UTC
In the Linux kernel, the following vulnerability has been resolved:

futex: Don't leak robust_list pointer on exec race

sys_get_robust_list() and compat_get_robust_list() use ptrace_may_access()
to check if the calling task is allowed to access another task's
robust_list pointer. This check is racy against a concurrent exec() in the
target process.

During exec(), a task may transition from a non-privileged binary to a
privileged one (e.g., setuid binary) and its credentials/memory mappings
may change. If get_robust_list() performs ptrace_may_access() before
this transition, it may erroneously allow access to sensitive information
after the target becomes privileged.

A racy access allows an attacker to exploit a window during which
ptrace_may_access() passes before a target process transitions to a
privileged state via exec().

For example, consider a non-privileged task T that is about to execute a
setuid-root binary. An attacker task A calls get_robust_list(T) while T
is still unprivileged. Since ptrace_may_access() checks permissions
based on current credentials, it succeeds. However, if T begins exec
immediately afterwards, it becomes privileged and may change its memory
mappings. Because get_robust_list() proceeds to access T->robust_list
without synchronizing with exec() it may read user-space pointers from a
now-privileged process.

This violates the intended post-exec access restrictions and could
expose sensitive memory addresses or be used as a primitive in a larger
exploit chain. Consequently, the race can lead to unauthorized
disclosure of information across privilege boundaries and poses a
potential security risk.

Take a read lock on signal->exec_update_lock prior to invoking
ptrace_may_access() and accessing the robust_list/compat_robust_list.
This ensures that the target task's exec state remains stable during the
check, allowing for consistent and synchronized validation of
credentials.