Bug 2429598 (CVE-2025-71109)
| Summary: | CVE-2025-71109 kernel: MIPS: ftrace: Fix memory corruption when kernel is located beyond 32 bits | ||
|---|---|---|---|
| Product: | [Other] Security Response | Reporter: | OSIDB Bzimport <bzimport> |
| Component: | vulnerability | Assignee: | Product Security DevOps Team <prodsec-dev> |
| Status: | NEW --- | QA Contact: | |
| Severity: | unspecified | Docs Contact: | |
| Priority: | unspecified | ||
| Version: | unspecified | Keywords: | Security |
| Target Milestone: | --- | ||
| Target Release: | --- | ||
| Hardware: | All | ||
| OS: | Linux | ||
| Whiteboard: | |||
| Fixed In Version: | Doc Type: | --- | |
| Doc Text: | Story Points: | --- | |
| Clone Of: | Environment: | ||
| Last Closed: | Type: | --- | |
| Regression: | --- | Mount Type: | --- |
| Documentation: | --- | CRM: | |
| Verified Versions: | Category: | --- | |
| oVirt Team: | --- | RHEL 7.3 requirements from Atomic Host: | |
| Cloudforms Team: | --- | Target Upstream Version: | |
| Embargoed: | |||
In the Linux kernel, the following vulnerability has been resolved: MIPS: ftrace: Fix memory corruption when kernel is located beyond 32 bits Since commit e424054000878 ("MIPS: Tracing: Reduce the overhead of dynamic Function Tracer"), the macro UASM_i_LA_mostly has been used, and this macro can generate more than 2 instructions. At the same time, the code in ftrace assumes that no more than 2 instructions can be generated, which is why it stores them in an int[2] array. However, as previously noted, the macro UASM_i_LA_mostly (and now UASM_i_LA) causes a buffer overflow when _mcount is beyond 32 bits. This leads to corruption of the variables located in the __read_mostly section. This corruption was observed because the variable __cpu_primary_thread_mask was corrupted, causing a hang very early during boot. This fix prevents the corruption by avoiding the generation of instructions if they could exceed 2 instructions in length. Fortunately, insn_la_mcount is only used if the instrumented code is located outside the kernel code section, so dynamic ftrace can still be used, albeit in a more limited scope. This is still preferable to corrupting memory and/or crashing the kernel.