Bug 2320217 (CVE-2024-47741) - CVE-2024-47741 kernel: btrfs: fix race setting file private on concurrent lseek using same fd
Summary: CVE-2024-47741 kernel: btrfs: fix race setting file private on concurrent lse...
Keywords:
Status: NEW
Alias: CVE-2024-47741
Product: Security Response
Classification: Other
Component: vulnerability
Version: unspecified
Hardware: All
OS: Linux
medium
medium
Target Milestone: ---
Assignee: Product Security DevOps Team
QA Contact:
URL:
Whiteboard:
Depends On: 2320298
Blocks:
TreeView+ depends on / blocked
 
Reported: 2024-10-21 13:03 UTC by OSIDB Bzimport
Modified: 2024-10-21 20:29 UTC (History)
4 users (show)

Fixed In Version:
Clone Of:
Environment:
Last Closed:
Embargoed:


Attachments (Terms of Use)

Description OSIDB Bzimport 2024-10-21 13:03:05 UTC
In the Linux kernel, the following vulnerability has been resolved:

btrfs: fix race setting file private on concurrent lseek using same fd

When doing concurrent lseek(2) system calls against the same file
descriptor, using multiple threads belonging to the same process, we have
a short time window where a race happens and can result in a memory leak.

The race happens like this:

1) A program opens a file descriptor for a file and then spawns two
   threads (with the pthreads library for example), lets call them
   task A and task B;

2) Task A calls lseek with SEEK_DATA or SEEK_HOLE and ends up at
   file.c:find_desired_extent() while holding a read lock on the inode;

3) At the start of find_desired_extent(), it extracts the file's
   private_data pointer into a local variable named 'private', which has
   a value of NULL;

4) Task B also calls lseek with SEEK_DATA or SEEK_HOLE, locks the inode
   in shared mode and enters file.c:find_desired_extent(), where it also
   extracts file->private_data into its local variable 'private', which
   has a NULL value;

5) Because it saw a NULL file private, task A allocates a private
   structure and assigns to the file structure;

6) Task B also saw a NULL file private so it also allocates its own file
   private and then assigns it to the same file structure, since both
   tasks are using the same file descriptor.

   At this point we leak the private structure allocated by task A.

Besides the memory leak, there's also the detail that both tasks end up
using the same cached state record in the private structure (struct
btrfs_file_private::llseek_cached_state), which can result in a
use-after-free problem since one task can free it while the other is
still using it (only one task took a reference count on it). Also, sharing
the cached state is not a good idea since it could result in incorrect
results in the future - right now it should not be a problem because it
end ups being used only in extent-io-tree.c:count_range_bits() where we do
range validation before using the cached state.

Fix this by protecting the private assignment and check of a file while
holding the inode's spinlock and keep track of the task that allocated
the private, so that it's used only by that task in order to prevent
user-after-free issues with the cached state record as well as potentially
using it incorrectly in the future.


Note You need to log in before you can comment on or make changes to this bug.